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Abstract: We developed an asymptotic formalism that fully characterizes
the propagation and loss properties of a Bragg fiber with finite cladding lay-
ers. The formalism is subsequently applied to miniature air-core Bragg fibers
with Silicon-based cladding mirrors. The fiber performance is analyzed as a
function of the Bragg cladding geometries, the core radius and the material
absorption. The problems of fiber core deformation and other defects in Bragg
fibers are also addressed using a finite-difference time-domain analysis and a
Gaussian beam approximation, respectively.
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1. Introduction

Bragg fibers, which are composed of a low index core (possibly air) surrounded by alternating
annular layers with different dielectric constants, were first proposed by Yeh et al. [1] in 1978.
A schematic of a Bragg fiber is shown in Fig. 1. The possibility of guiding light in air by Bragg
fibers [2, 3, 4, 5, 6, 7, 8] or photonic crystal fibers [9] has recently attracted a lot of atten-
tion. Omni-fibers [2, 3], which are Bragg fibers with very large cladding indices contrast, have
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been experimentally demonstrated. Miniature Bragg fibers with silicon based cladding materi-
als such as Si and Si3N4, were recently fabricated by J. Fleming et al. [8] using combinations
of etching and CVD (chemical vapor deposition). The silicon based miniature Bragg fibers are
developed for integrated optics applications such as thermo-optical switches and BioMEMS
devices, which require properties quite different from other types of Bragg fibers intended for
telecommunication applications. For example, Bragg fibers for integrated optics applications
can tolerate propagation loss of the order of dB/cm, rather than <dB/km demanded by telecom-
munication fibers.

low index
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low index
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high index
cladding

rco

rconco
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Fig. 1. Schematics of a Bragg fiber. In this paper, we assume the low index core is air (nco = 1)
and has radius of rco. The refractive index and the thickness of the cladding layers are respectively
n1, L1, and n2, L2. The dashed line represents the interface between the “exact solution” region
and the “asymptotic solution” region.

As in the case of step-index optical fibers, two of the most important parameters of Bragg
fibers are the modal dispersion and the propagation loss. In Ref. [4] and Ref. [5], we have de-
veloped an asymptotic formalism that greatly simplifies the analysis of a Bragg fiber. Here we
incorporate a leaky mode method [3, 7] into this asymptotic formalism. The extended asymp-
totic approach developed in this paper is capable of fully characterizing the dispersion and
loss of the Bragg fiber, while retaining the simplicity and physical transparency of the original
asymptotic approach. Next, we apply the asymptotic approach to analyze the guiding behavior
of a miniature Bragg fiber as reported in Ref. [8] as a function of the absorption in the cladding
layers, the geometries of the Bragg cladding, and the core radius. We find that only four pairs
of Si/Si3N4 cladding pairs are required to achieve propagation loss below 1dB/cm. From the
asymptotic analysis results, we establish that the material absorption in the Si cladding layers
has little influence on the propagation loss of the guided air-core modes. We obtain a simple
formula that characterizes the exponential reduction of the modal propagation loss as the num-
ber of cladding pairs increases. We find that the quarter-wave stack cladding geometry, which
is commonly used in the literature, does not necessarily lead to optimal guiding.

Due to the fabrication processes, it is difficult to realize the miniature Bragg fibers with
perfect cylindrical symmetry. Using the finite difference time domain (FDTD) simulations, we
investigate a deformed Bragg fiber and demonstrate that the Bragg fiber dispersion is insensi-
tive to the air core deformation. However, the guided modes in the deformed fiber are no longer
cylindrically symmetric, which may lead to a higher propagation loss. Due to the CVD pro-
cesses, the Bragg fibers also have gas inlet ports along the fibers at intervals about hundreds
of microns. Drawing analogy with free space diffraction of a Gaussian beam, we estimate the
excessive loss associated with the presence of the gas inlet ports.

2. Asymptotic analysis

The approach outlined in this section is an extension of the asymptotic formalism developed
in Ref. [4] and Ref. [5]. The key difference is that here we allow the propagation constant β
to be complex, with β = βr + iβi (see also Ref. [3] and Ref. [7]). The real part βr determines
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the dispersion properties of the Bragg fiber modes, and the imaginary part βi gives the modal
loss. We also allow the dielectric constants of the cladding media to be complex to account for
the material absorption. The main advantages of the asymptotic formalism are its simplicity
and physical transparency, especially when we need consider both TE and non-TE polarized
modes. More specifically, in the asymptotic analysis, we approximate electromagnetic fields in
the Bragg fiber cladding layers as exp(±ikr)/

√
r, which behave similarly to those in a planar

Bragg stack. In Ref. [4], this similarity allows us to derive an analytical expression for the
dispersion of the Bragg fiber modes.

It can be shown that the guided Bragg fiber mode can be determined from the four electro-
magnetic field components Ez, Hθ , Hz, and Eθ [1]. From symmetry consideration alone, we can
label each guided mode according to its angular frequency ω, propagations constant β , and the
“azimuthal quantum number” m, with the functional dependence of exp(iωt − iβz)exp(imθ).
In the nth dielectric layer, the radial dependence of the guided mode can be written as [1]:


Ez

Hθ
Hz

Eθ


 = Mn(r)




An

Bn

Cn

Dn


 , (1)

where Mn(r) is a 4×4 matrix, and the field amplitude constants An, Bn, Cn, and Dn are constant
within the nth dielectric layer.

In the asymptotic formalism, we separate the dielectric layers of the Bragg fiber into two
groups, where the exact solutions are used for the layers of the inner region, while the asymp-
totic approximation of the exact solutions is used for the outer region. (see Fig. 1). In the “exact
solution” region, the 4×4 matrix Mn(r) is defined as [1]:

Mn(r) =




Jm(knr) Ym(knr) 0 0
−iωε0εn

kn
J′m(knr) −iωε0εn

kn
Y ′

m(knr) mβ
k2

nr
Jm(knr) mβ

k2
nr

Ym(knr)
0 0 Jm(knr) Ym(knr)

mβ
k2

nr
Jm(knr) mβ

k2
nr

Ym(knr) iωµ0
kn

J′m(knr) iωµ0
kn

Y ′
m(knr)


 , (2)

where εn is the dielectric constant of the nth layer, and kn is

kn =
√

εnω2/c2 −β2 . (3)

It should be emphasized that εn can be a complex number, with its imaginary part accounting
for the material absorption in the nth dielectric layer. If the nth dielectric layer belongs to the
“asymptotic solution” region, the 4×4 matrix Mn(r) take the form of [4, 5]:

Mn(r) =
1√
r




e−iknr eiknr 0 0
−ωε0εn

kn
e−iknr ωε0εn

kn
eiknr 0 0

0 0 e−iknr eiknr

0 0 ωµ0
kn

e−iknr −ωµ0
kn

eiknr


 . (4)

We notice that Eq. (4) is block-diagonal. As a result, the TM modes with field components Ez

and Hθ , are decoupled from the TE modes which consist of Hz and Eθ .
The four field amplitude constants (An+1, Bn+1, Cn+1, and Dn+1) in the (n+1)th layer can be

derived from the corresponding quantities in the adjacent nth layer by requiring the continuity
of Ez, Hθ , Hz, and Hθ across the interface between the two dielectric layers [5]:


An+1

Bn+1

Cn+1

Dn+1


 = [Mn+1(ρn)]−1Mn(ρn)




An

Bn

Cn

Dn


 , (5)
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where ρn is the radius of the interface between the nth dielectric layer and the (n+1)th dielectric
layer, Mn and Mn+1 are defined according to Eq. (2) or Eq. (4), depending on whether the
dielectric layer belongs to the inner “exact solution” region or to the outer “asymptotic solution”
region. We can apply Eq. (5) iteratively and relate the field amplitude constants outside of the
Bragg fiber (Aout , Bout , Cout , and Dout ) to the corresponding quantities within the low index core
(Acore, Bcore, Ccore, and Dcore) via a 4×4 transfer matrix:


Aout

Bout

Cout

Dout


 =




t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44







Acore

Bcore

Ccore

Dcore


 . (6)

We require that the electromagnetic field must be finite within the low index core and that
the electromagnetic field outside of the fiber consists of only the outgoing radiation field. Such
boundary conditions lead to Bcore = Dcore = 0 and Bout = Dout = 0, respectively. Substituting
these two requirements into Eq. (6), we obtain:

T
[

Acore

Ccore

]
= 0 , T =

[
t21 t23

t41 t43

]
. (7)

The complex propagation constant β of any guided mode is given by the condition of det(T) =
0, and the field distribution can be obtained from the eigenvector [Acore Bcore] that corresponds
to the zero eigenvalue of the 2×2 matrix T.

3. Guiding in silicon-based miniature Bragg fibers

3.1 Dispersion and loss in a specific Bragg fiber geometry

We first apply the asymptotic formalism to analyze the dispersion and propagation loss of the
guided modes in a Bragg fiber as reported by J. Fleming et al. in Ref. [8]. The fiber consists
of four pairs of Si/Si3N4 mirror stacks, with Si being the innermost cladding layer. For the
polysilicon layers, we use a refractive index n1 = 3.5 and thickness L1 = 0.11µm. The refrac-
tive index of the Si3N4 layer is n2 = 2.0 and its thickness is L2 = 0.21µm. The air core radius is
rco = 7.5µm. The bulk absorption in the polysilicon layer is estimated to be about 10dB/cm. In
our analysis, we assume that the “exact solution” region consists of the five innermost dielectric
layers, whereas the rest of the structure is described by the asymptotic solutions. With a large
air core radius, the Bragg fiber supports multiple guided modes, which are labeled according
to their “azimuthal quantum number” m followed by the number of zeros of the electromag-
netic field in the air core. We limit ourselves to the first two TE modes (TE01 and TE02), the
fundamental TM mode (TM01), and the fundamental mixed polarization mode (HE11).

In Fig. 2(a), we plot the Eθ field of the TE01 mode at the wavelength of 1.65µm. We notice
that the Eθ component is zero at the interface between the air core and the Si layer, which has
been explained by drawing an analogy to perfect metal [3, 7]. From a more fundamental point
of view, the condition of Eθ = 0 at the air/Si interface leads to maximum reduction of the Eθ
field amplitude within the Si cladding layer [1], which in turn results in minimum propagation
loss. Combining the condition of Eθ = 0 at r = rco with the fact that TE modes take the form of
J1(

√
ω2/c2 −β2r) within the air core, we find

nT E0i
e f f =

√
1− (

x1iλ
2πrco

)2 , (8)

where x1i is the ith zero of the first order Bessel functions, i.e. J1(x1i) = 0. This relation has been
given in Ref. [7]. Using the asymptotic approach, we calculate the effective indices (defined as
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βrc/ω) of the TE01, TE02, TM01, and HE11 modes and plot the results in Fig. 2(b). The
effective indices of the TE01 and TE02 modes, predicted by Eq. (8), are also shown in Fig. 2(b)
as solid lines. It is clear that Eq. (8) is in excellent agreement with the calculated dispersion of
the TE modes.
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Fig. 2. The asymptotic results of an air-core Bragg fiber with rco = 7.5µm, n1 = 3.5 and L1 =
0.11µm, n2 = 2.0 and L2 = 0.21µm. (a) The Eθ component of the TE01 mode at λ = 1.65µm.
(b) The effective indices of the TE01, TE02, TM01, and HE11 modes. (c) The loss of the TE01,
TE02, TM01, and HE11 modes. In (a), (b) and (c), we set the absorption loss in the Si layer to be
10dB/cm. (d) The loss of the TE01 mode at λ = 1.55µm with Si layer loss varying from 0dB/cm
to 10dB/cm. The dashed line is a linear fit of the asymptotic results.

The loss of the TE01, TE02, TM01, and HE11 modes are shown in Fig. 2(c) within the
wavelength range of 1500nm to 1700nm. As expected, the TE01 mode has the lowest loss,
between 0.5 to 2 dB/cm within the wavelength range of interest. It should be mentioned that the
experimentally realized miniature Bragg fiber deviates considerably from the circular shape,
which may lead to higher loss and will be discussed in the next section. Another feature of
Fig. 2(c) is that the TE02 mode and the HE11 mode have similar loss, about 5 times higher
than that of the fundamental TE01 mode, whereas in other realizations of Bragg fibers [3], non-
TE polarized modes generally have loss far greater than that of the higher order TE modes.
Experimentally, guiding in miniature Bragg fibers has been observed in the wavelength range
of 1500nm to 1700nm [8]. However, the propagation loss of the guided modes is still to be
measured.

In our asymptotic approach, the material absorption is taken into account via the complex
dielectric constant. To determine the influence of the material absorption in the cladding layers,
we vary the Si absorption from 0dB/cm to 10dB/cm with the remaining parameters held fixed
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and calculate the modal loss of the TE01 mode at 1.55µm. The results are shown in Fig. 2(d).
The dashed line is a linear fit of the asymptotic results. We find the linear coefficient is Γ = 10−4,
which clearly demonstrates that the cladding material absorption has minimal influence on the
guidance of photons in the miniature Bragg fibers.
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Fig. 3. The loss of the TE01, TE02, TM01, and HE11 modes at λ = 1.55µm. The refractive
index and thickness of the cladding layers are the same as in Fig. 2. In (a) we choose the air core
radius rco = 8µm and vary the Bragg cladding pair number. The dashed lines are the fitting of
the asymptotic results using Eq. (9). In (b), we use 4 pairs of Bragg cladding layers and vary the
air core radius. The dashed lines are the fitting of the asymptotic results for the TM01 and HE11
modes using Eq. (11). The solid lines are the estimation given by Eq. (12).

3.2 Loss dependence on Bragg cladding pair number and air core radius

To gain more insight into guiding in a Bragg fiber, we investigate the dependence of the modal
loss on the number of Bragg cladding pairs and the air core radius. We first fix the air core
radius to be rco = 8µm and vary the number of Bragg cladding pairs from 3 to 8, with the rest
of the fiber parameters held to the same value as those in Fig. 2. Using the asymptotic approach,
we calculate the loss of the TE01, TE02, TM01, and HE11 mode at λ = 1.55µm and show the
results in Fig. 3(a). From the asymptotic results, we find that the modal loss dependence on the
number of the cladding pairs N is given by:

Modal Loss ∝ ∆ N , (9)

where ∆ is a constant. From fitting the asymptotic results using Eq. (9), we find ∆T E01 = ∆T E02 =
0.29, and ∆T M01 = ∆HE11 = 0.43. The fitting results are shown in Fig. 3(a) as dashed lines,
which are in excellent agreement with the asymptotic results. We notice that the TE modes
have similar ∆ parameters, whereas the mixed polarization mode and the TM mode share a
different ∆ parameter. This interesting phenomenon can be understood as a direct result of the
decoupling of the TE and the TM components in the Bragg cladding layers. Mathematically
speaking, when m �= 0 the presence of the off-diagonal terms such as (mβ/k2

nr)Jm(knr) and
(mβ/k2

nr)Ym(knr) in Eq. (2) mixes the TE component and the TM component in the “exact
solution” region. On the other hand, in the “asymptotic solution” region, the 4×4 transfer matrix
becomes block-diagonal, according to Eq. (4). As a consequence, the TE component and the
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TM component decay independently in the asymptotic region even for the mixed polarization
modes. Since in general the TE component decays much faster than the TM component (see the
following discussion), the propagation loss of the mixed polarization modes should share the
characteristics of the TM modes.

If the thickness of the cladding layers is close to that of the quarter-wave stack, which is the
case for the fiber studied in Fig. 3, the loss decay parameter ∆ can also be found using the fol-
lowing simple procedure. According to Ref. [1], a Bragg cladding pair in a quarter-wave stack
can reduce the TE mode amplitude by a factor of

√
εlω2/c2 −β2/

√
εhω2/c2 −β2, where εl is

the dielectric constant of the low index medium and εh is that of the high index medium. For TM
modes, the corresponding amplitude reduction factor is [εl

√
εhω2/c2 −β2]/[εh

√
εlω2/c2 −β2].

Since the modal loss is proportional to the square of the field amplitude outside of the Bragg
cladding, we can approximate the loss reduction factor for the TE and non-TE modes as:

∆T E =
εl −1
εh −1

,∆non−T E =
ε2

l (εh −1)
ε2

h (εl −1)
, (10)

where we have substituted the propagation constant β by ω/c. Due to the large core area, this is
an excellent approximation, as can also be seen from Fig. 2(b). Using εl = 4.0 and εh = 12.25
for the Si/Si3N4 cladding, Eq. (10) gives ∆T E = 0.27 and ∆non−T E = 0.40, quite close to the
values of ∆T E = 0.29 and ∆non−T E = 0.43 obtained from fitting Fig. 3(a) using Eq. (9). The
difference might be due to the slight deviation of the Bragg cladding from a quarter-wave stack
at λ = 1.55µm.

In Fig. 3(b), we choose 4 pairs of Si/Si3N4 cladding layers and investigate the variation of
the modal loss as we change the air core radius. It was suggested in Ref. [3] that the modal loss
for very large core area Bragg fibers (up to 100µm) is inversely proportional to r3

co. However
for the miniature Bragg fibers with core area less than 10µm, we find that the 1/r3

co relationship
no longer holds. In particular, it is clear from the figure that the TE polarized modes and the
non-TE polarized obeys different power law dependence. We fit the asymptotic results in Fig.
3(b) assuming

Modal Loss ∝
( 1

rco

)α
. (11)

We find αT E01 = 3.61, αT E02 = 3.49, αT M01 = 2.20, and αHE11 = 2.64.
It has been demonstrated in Ref. [7] that the loss behavior of the TE modes can be modeled

by a 1D Bragg stack. In this picture, we can think of the ith TE mode as formed by photons
zigzagging within the air core with incident angle π− θ , with θ = x1iλ /2πrco according to
Eq. (8). As shown in Fig. 4, the distance between two consecutive “bounces” should be 2rco/θ ,
assuming a small θ . Denoting the amplitude reflection coefficient of the Bragg cladding is R,
we have exp(−4βirco/θ) = |R|2. For |R|2 approaching unity, this relation can be rewritten in
the dB unit as

Modal Loss = 3.46×103 × x1iλ
r2

co
(1−|R|2) (dB/cm) , (12)

where the unit for rco and λ is µm. Comparing Eq. (12) with Eq. (11), we notice that the 1/r2
co

dependence of the modal loss comes purely from the “geometrical” consideration: The larger
the core radius is, the longer the distance between the two consecutive reflections. The rest of
the rco dependence of the TE modal loss comes from the reflection coefficient of the 1D Bragg
stack. We apply Eq. (12) to estimate the TE modal loss and show the result in Fig. 3(b) as solid
lines. It is clear that Eq. (12) provides an excellent approximation for most of the rco values.
The only exception is the TE02 modal loss at rco = 2µm, which might be due to a large θ and
the reflection coefficient that is no longer close to unity.
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Fig. 4. Estimation of the modal loss from the picture of photons zigzagging within the Bragg
fiber.

3.3 Loss dependence on cladding layer thickness

In designing Bragg fibers, it is generally assumed that the quarter-wave stack provides the great-
est confinement as cladding layers. For a cladding layer with dielectric constant ε and thickness
L, we define a parameter Φ = 4

√
ε −1L/λ . For a Bragg fiber with a large air core and con-

sequently β ≈ 2π/λ , the parameter Φ equals to unity if the cladding layer has exactly quar-
ter wave thickness. For the fiber studied in Fig. 2(c), we find ΦSi = 0.98 for the Si layer and
ΦSi3N4 = 0.97 for the Si3N4 layer at λ = 1.5µm. At λ = 1.7µm, the corresponding quantities
are, respectively, ΦSi = 0.87 and ΦSi3N4 = 0.86. Yet at 1.5µm the Bragg fiber is about four times
as lossy as at 1.7µm. This suggests that the quarter-wave stack condition may not lead to lowest
propagation loss.

To further investigate this phenomenon, we changed the Si3N4 layer thickness from 0.21µm
to 0.19µm, while keeping the rest of the fiber parameters the same as in Fig. 2(c). At λ = 1.5µm,
the new Si3N4 layer thickness corresponds to ΦSi3N4 = 0.88. We again calculate the Bragg fiber
loss with λ between 1.5µm and 1.7µm and plot the results in Fig. 5(b). For the purpose of
comparison, we copy Fig. 2(c) as Fig. 5(a). From Fig. 5, it is clear that the reduction of the
Si3N4 layer thickness leads to both lower loss for the TE01 mode and larger loss penalty for the
higher order modes. The solid lines are the loss estimate for the TE modes given by Eq. (12),
which again are in excellent agreement with the asymptotic result.

4. Influence of the fiber deformation

In the asymptotic analysis, we assume that the Bragg fibers possess perfect cylindrical symme-
try and are uniform along the propagation direction. The experimentally realized Bragg fibers
as reported in Ref. [8], however, retain neither of these two properties: The fiber cross-section
deviates considerably from the circular shape, and there are gas inlet ports along the fiber prop-
agation direction.

We first use the finite difference time domain (FDTD) algorithm to simulate a Bragg fiber
without the cylindrical symmetry but retains uniformity along the propagation direction. Taking
advantage of the translational symmetry, we can assume the z dependence of the guided mode
as exp(−iβz), where β is the propagation constant. This allows us to take out the z dimension
in our FDTD calculations and consider in the simulation only the cross-section of the Bragg
fibers. For more details on the FDTD algorithm, the readers can consult Ref. [10].

We limit the FDTD simulations to the TE01 mode and first analyze a Bragg fiber similar
to what has been described in the previous section. We set the air core radius to be 300 FDTD
cells. The thickness of the Si layer and the Si3N4 layer are 6 cells and 12 cells, respectively. By
introducing a normalization factor, this FDTD structure represents a Bragg fiber with air core
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Fig. 5. Asymptotic results for the TE01, TE02, TM01, and HE11 modal loss. The solid lines are
the estimation of the TE mode loss given by Eq. (12). In (a), the fiber parameters are the same
as used in Fig. 2(c). In (b), we change the Si3N4 layer thickness to 0.19µm, while the rest of the
parameters remain the same as in (a).

radius of 5.3µm, Si layer thickness 0.11µm, and Si3N4 layer thickness 0.21µm. Using FDTD
simulations, we calculate the dispersion and the Bz field for both a circularly symmetric Bragg
fiber and a deformed Bragg fiber whose upper section is partially flattened. The dispersion
of both fibers are plotted in Fig. 6(a), together with a theoretical dispersion curve calculated
according to Eq. (8). The theoretical results are in excellent agreement with the FDTD results
for the circularly symmetric Bragg fiber, which justify our choice of the simulation parameters.
As shown in Fig. 6(a), the dispersion of the deformed fiber is almost the same as that of the
cylindrically symmetric fiber, with a small “down-shift” due to the slightly smaller cross-section
for the deformed fiber.

The Bz field distribution of the circular Bragg fibers and the deformed Bragg fibers at
λ = 1.55µm are given in Fig. 6(b) and Fig. 6(c). The Bz field in the “flattened” Bragg fiber
is essentially that of a TE01 mode. Yet it also has components with non-zero “angular quantum
number” m that tend to be much more lossier. In fact, there is clearly some radiation field out-
side of the deformed Bragg fiber in Fig. 6(c). As a result, a deformed Bragg fiber should have
modal loss higher than what is predicted by the asymptotic theory for a cylindrically symmetric
fiber, which as shown in Fig. 2(c) is between 0.5-2dB/cm.

The CVD process in the fabrication of the miniature Bragg fiber requires the placement of
the gas inlet ports about every 1mm along the fiber propagation direction. The gas inlet port
can be regarded as a special case of the Bragg fiber inter-connect as shown in Fig. 7. We can
think of channel 1 as the Bragg fiber and channel 2 as the gas inlet port that feeds the gas to
be deposited on the surface of the Bragg fiber. In this language, the excessive propagation loss
caused by the gas inlet port is the throughput loss of the Bragg fiber inter-connect.

As in Fig. 7, we assume the Bragg fiber has an air core radius of r1 and the gas inlet port has
an air core radius of r2. One method of calculating the throughput loss is to find the azimuthal
component of the electric field at the beginning of the throughput port (denoted by Eθ,t in Fig.
(7)). Since the electric field of the TE01 mode has only the azimuthal component Eθ,T E01, the
throughput loss is simply given by 1− |∫ Eθ,tEθ,T E01 r dr dθ|2. The process of finding Eθ,t ,
however, can be very complicated. In the following discussion, we present a much simpler
approach by drawing analogy with the free space diffraction of the Gaussian beam. Since the
Eθ,t field results from the diffraction of the TE01 mode, we expect the following discussion
should at least give us an order of magnitude estimate.
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Fig. 6. (a) Dispersion of a Bragg fiber, with air core radius 5.3µm, Si layer thickness 0.11µm and
Si3N4 layer thickness 0.21µm. The diamonds and the circles respectively represent the dispersion
of the cylindrically symmetric fibers and the deformed fibers, calculated from FDTD simulations.
The solid line is given by Eq. (8). In (b) and (c), we show the Bz field of the TE01 mode at
λ = 1.55µm in the circularly symmetric Bragg fiber and the deformed Bragg fiber.

For a Gaussian beam with minimal spot size w0, the evolution of the beam spot size w(z)
follows [11]:

[w(z)]2 = w2
0(1+

z2

z2
0

) , z0 =
πw2

0

λ
. (13)

In order to approximate the diffraction of the TE01 mode by a Gaussian beam, we need to find
its equivalent minimal spot size w0. According to Eq. (8), the far field divergence angle θ of the
TE01 mode is θ = x11λ /(2πr1), whereas the far field divergence angle of a Gaussian beam is
given by θ = λ /πw0 [11]. Equalizing the two divergence angles, we find w0/r1 = 2/x11 ≈ 0.52,
which has the right order of magnitude since the minimal spot size w0 should be less than the
Bragg fiber radius r1. Substituting this result into Eq. (13), we find[ w0

w(z)

]2
=

1

1+ z2λ 2x4
11

16π2r4
1

. (14)

Since w(z)2 is proportional to the cross-section area of the Gaussian beam, the amount of light
that is coupled back into the throughput port can be approximated by [w0/w(z)]2. Set z = 2r2

and use dB unit, we find:

Throughtput Loss = 23.7
r2

2λ 2

r4
1

(dB). (15)

(C) 2003 OSA 5 May 2003 / Vol. 11,  No. 9 / OPTICS EXPRESS  1048
#2230 - $15.00 US Received March 14, 2003; Revised April 25, 2003



θ

2r2

2r1
Eθ,ΤΕ01 tθ,E

input through

cross
cr

os
s

channel 2

channel 1

Fig. 7. Schematics of a Bragg fiber inter-connect.

Use the value of r1 = 7.5µm, r2 = r1/2, and λ = 1.55µm, we find the throughput loss is 0.25dB.
We notice that the the loss has a 1/r4

1 dependence. If we keep the rest of the parameters and
increase air core radius by 50%, the throughput loss is decreased by a factor 5.

5. Conclusion

In conclusion, we extend the asymptotic model developed in Ref. [4] and [5] to include the
Bragg fiber propagation loss due to the finite cladding layer thickness and the material absorp-
tion. We analyze air-core Bragg fibers with Si/Si3N4 cladding pairs, which were fabricated
using chemical vapor deposition (CVD) [8], and demonstrate that it is possible to achieve prop-
agation loss below 1dB/cm with only 4 pairs of Si/Si3N4 cladding layers. We find that the ma-
terial absorption in the cladding layers has little impact on the fiber propagation loss. We also
give a simple formula that describes the reduction of fiber propagation loss as we increase the
number of cladding pairs. We use a finite-difference time-domain (FDTD) algorithm to investi-
gate the impact of fiber deformation on the modal propagation characteristics. Finally, a simple
Gaussian beam approximation is applied to evaluate the additional loss due to the existence of
the gas inlet ports introduced in the CVD fabrication processes.
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